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Abstract— An analytical solution has been deveioped for the impact response of a simply supported
anisotropic composite cylinder. The contact force was obtained from the compatibility condition
between the elastic impactor and the cylinder, with a modified Hertzian law. The Hertzian contact
force term introduces a slight nonlinearity in the variation of contact force amplitude with velocity
of impact. The present analysis also incorporates the terms that arise in the expressions for stress
resultants and stress couples due to the trapezoidal shape of an elemental section of a shell. These
trapezoidal terms can cause significant effects on the strain response of thick shell elements if the
composite layup is non-symmetric. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

Composite materials are increasingly finding application in shell structures such as pressure
vessels, pipe lines, rocket motor casing, to name a few. Despite the fact that most composite
structures are rarely completely flat in practice, most of the research focus has been on
plate and beam structures, while relatively little research has been carried out on composite
shell structures. Nevertheless, most of the methods that have been applied in the analysis
of flat plates are also applicable for shell structures.

Some of the recent studies on dynamics of non-planar composite structures include
that by Bert and Birman (1988), who conducted a parametric study of the dynamic
instability of simply supported circular cylindrical shells using a first order shear deformable
theory. Ramkumar and Thakar (1987), studied the impact response of curved laminated
plates, using Donnel’s approximations for thin shells. They represented the load and the
radial displacements by Fourier series expansions, and calculated the deflections and the
back surface strains due to a known linear force history. In a similar study conducted by
Christoforou and Swanson (1990), the authors neglected the local contact deformation in
deriving the equilibrium equation between the striker and the cylinder. The resulting integral
equation was then solved using a combination of Laplace transform technique and the
Cauchy residue theorem. Chandrashekhara and Schroeder (1995) studied the nonlinear
impact response of cylindrical and doubly curved shells using a finite element technique.
Their analysis was based on Sander’s shell theory, and included shear deformation effects.

In the present study, the impact response of an orthotropic cylinder is analysed. By
considering compatibility of displacements between the impactor and the cylinder, an
expression is obtained from which the contact force history is calculated using Muller’s
root search method. In the analysis of shell structures most authors usually consider as
negligible, terms that arise due to the trapezoidal shape of the cross-section of an element
of the shell. The inconsistency that this assumption introduces in the formulation of the
governing equations was first highlighted by Fliigge (1973). Although, in most cases,
especially for thin shells, the strains calculated based on such an analysis are not significantly
affected, for thick shells this can lead to significant errors in the calculated moments and
forces.
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Fig. 1. An elemental section of cylinder and coordinate system.

2. GOVERNING EQUATIONS

The equations of motion for an elemental section of a circular cylindrical shell (Fig.
1) with mass density per unit length p, radius a, and thickness 4 are, after elimination of
transverse shear forces :
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where M, M,, M, M, are stress couples, N,, N,, N, are stress resultants, and u, v, w
are the displacements along the axis of the cylinder x, the hoop direction ¢, and the radial
direction z, respectively. The stress resultants and stress couples on an element of the
cylindrical shell are related to the stress components as
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Whereas the shear stresses 7, 7,, are equal, 1,, = 1,., the stress couples and the stress
resultants are unequal, M,, # M, and N,, # N,,, due to the term z/a which arises due to
the trapezoidal shape of the cross-section of an element of the shell. This is because for an
element of the cylinder, two opposite sides on the cylindrical section are trapezoids, and
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their centroids lie slightly outside the middle surface (Fliigge, 1973). The extra term that
accounts for this effect of shell curvature is usually small, and may be negligible in the case
of a thin shell. However, for an accurate formulation of the elasticity solution for a shell it
1s necessary to retain this difference. For example, by considering moments about a radius
of the cylinder, an equilibrium condition may be written,

1
Nyy—Ny + ZIM‘PX = 0. 3

This condition will no longer be satisfied if N, = N,,,, since in general, M,,, # 0.
The stress resultants and stress couples may be expressed in terms of the stiffness

matrices for the laminate as,
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where A, By, D;;and L;; (i,j = 1,2, 6) are elements of stiffness matrices, and are defined in
terms of the plane stress reduced elastic stiffness Q as
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The reduced elastic stiffness matrix, Q, relates the lamina elastic stresses and strains in
global coordinates (Agarwal and Broutman, 1990) ;
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The midplane strains &2, &), y5, and curvatures k,, K,, and the rotation x

are (Timoshenko and Woinowski-Krieger, 1970),

o> 1D the cylinder
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and are related to the strain distributions in the cylinder,
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The equations of motion can be further simplified by considering a specially orthotropic
material with elastic stiffness matrix coefficients A, = Ay, = Big = Bys = D\ = Dy =
L,y = Ly, = 0. Materials whose stiffness matrix properties satisfy this condition include
composite laminates composed wholly of 0° and 90° fibre orientations. Using the notations;

B,
A* Atj_—a_j (l,]'—_ 13256)’
D,
Bt=B,——
pr—p,— Lo (10)
a

the equations of motion in terms of strains take the form
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3. METHOD OF SOLUTION

For a cylinder with simply supported ends, a closed form solution that also satisfies
the conditions of symmetry of deformation is obtained by representing displacement com-
ponents in terms of a double series (Fliigge, 1973),
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and the applied load, g, is given by
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where 7 is related to the length of the cylinder /, and the axial mode number m,
A=—. (14)

In their study on dynamic stability of cylindrical shells, Bert and Birman (1988) have
shown that the effects of in-plane inertia are negligible. Based on this assumption the
governing equation for the cylinder in terms of the displacement components may be
obtained by writing the strain components in terms of the displacements components eqn
(8), and using eqn (12) in the governing eqns (11),
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where the coefficients C;, (i,j = 1,2, 3) are,
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Equation (15) can be reduced to a single equation,
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where the natural frequencies of the cylinder are given by
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The contact load is assumed to be uniform and is distributed as a double half-sine
pulse over a small rectangular area, with length y and subtending an angle f in the hoop
direction. The centre of the loaded region is located at &, {, along the x and the ¢ coordinates
of the cylinder, respectively. The dynamic component of the applied load has the form

16F(ry . mmn .mny . B
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where F(¢) 1s the impact force.
The initial conditions for the problem are zero initial displacement and velocity, and
thus, the solution of (17) is given by the convolution integral

Won(t) =

ph(lu J‘t Q,..(1) sin w,,,(t —1) dz. 21

0

4. IMPACT LOADING

The contact force F(7) between the striker and the cylinder is obtained by considering
the approach «(?) between the two bodies (Lee, 1940 ; Goldsmith, 1960),
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where 1, is the velocity of collision and m is the mass of the striker. The transverse
displacement component w(z) is obtained by substituting eqn (21) into the last of (12). The
approach a(r) is given by Hertz contact law,

a(f) = <?)} (23)

where the contact stiffness &, is related to the elastic and the geometric properties of the
striker and the target as (Chandrashekhara and Schroeder, 1995),
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In the above equation, v is Poisson’s ratio, E is Young's modulus and R is surface radius.
The subscripts s and ¢ refer to the striker and the cylinder, respectively, and z is the through-
thickness direction. Detailed studies on the contact stiffness for carbon fibre composite
materials have been carried out by Yang and Sun (1982), as well as by Tan and Sun (1985).
Substituting eqns (21) and (23) into (22) yields
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By subdividing the contact duration into ; time intervals with small time increments Az,
and performing the integration over each time step, eqn (25) may be written as
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In the numerical examples that follow, for good accuracy the contact duration was
divided into a total of at least j = 400 time intervals, so as to give at least 150 time steps in
the period up to the time of peak force (Qian and Swanson, 1990). The contact force F(¢)
(taken as constant over each time increment) at the end of each time duration was then
calculated from eqn (26), using Muller’s root search method (Gerald and Wheatley, 1989).
This contact force history was then substituted into eqn (21) to obtain the transverse
displacement response, and the displacement components substituted into eqn (9) by using
(8) to obtain the strain components.

5. RESULTS AND DISCUSSION

The solution procedure outlines above is verified by comparing the impact force
response computed from eqn (26) with experimental results obtained by Gong (1995, 1996).
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Open ended filament wound glass fibre composite cylinders were used in this experiment
(their properties are listed in Table 1). In order to simulate simply supported boundaries,
the test cylinder was supported by wooden cradles that were located 280 mm apart. Thin
wires were then wrapped round the cylinder at the supported sections, and tied to the
cradles. Because of the large ratio of radius to wall thickness for this cylinder a/h ~ 47, the
natural frequency initially decreases, and later begins to slowly increase with increase in
circumferential wave number. This is because for such thin walled cylinder, for a fixed axial
wave number there is a decrease in the membrane strain energy and an increase in the
bending strain energy as the circumferential wave number increases (Fligge, 1973 ; Bert
and Kumar, 1982). Thus, in order to achieve proper convergence, at least 69 modal terms
were used in all the examples considered.

Figures 2(a), (b) and (c) show the force history for impact on this composite shell at
1 ms™", 3 ms™'and 5 ms~!, respectively. The figures show that whereas the contact period
did not change appreciably for all three values of impact velocity, the peak force varies
almost linearly with the velocity of impact. The hoop strain response (shown in Fig. 3(a))
and the axial strain response (shown in Fig. 3(b)) on the distal surface of the shell, the
impact point, both show an almost linear variation with impact velocity. Figure 4 shows
the effect of the ratio of hoop to axial Young’s moduli E,/E, on the contact force and
strains due to a 0.075 kg mass colliding at 1 ms~" against a hoop wound composite cylinder
(the axial Young’s modulus was kept constant while the hoop Young’s modulus was
varied). As expected, the contact force increased with increase in hoop stiffness of the
composite cylinder. As the Young’s modulus was increased in the hoop direction, both the
axial strain as well as the hoop strain decreased. However, there was a greater reduction in
hoop strain due to the increase in stiffness in that direction.

For a 2.3 mm thick hoop wound composite cylinder whose properties are given in
Table 1, the strain responses at different positions away from the region of impact (measured
in multiples of wall thickness) are shown in Figure 5. It can be observed from the figure
that the axial strain decays rapidly with axial distance. For this particular example where
the ratio of hoop to axial Young’s moduli E,/E, = 2.705, the axial strain at a distance of
two thicknesses away from the impact point has a peak value that is less than one tenth the
peak value on the distal surface at the impact point. At a distance of three thicknesses away
from the centre, the axial strain becomes compressive. On the other hand, the hoop strain
has a gradual decay, and still retains a peak value of more than one quarter of the initial
magnitude at a distance of five thicknesses away from the impact point. This decay rate
effect has important implications in the accuracy of experimental measurements of strain
responses in such cylinders, especially as regards the gauge length of the strain gauges used
and the precise location of the strain gauges in relation to the actual positions where strain
measurements are required.

In their study, Christoforou and Swanson (1990) concluded that for an impact problem
the response amplitude varies linearly with the velocity of impact. However, in their analysis
the nonlinear local contact force term was neglected. This assumption may be valid in cases
where the impactor has a large nose radius and there is no appreciable local contact
deformation. However, it may not be appropriate in most cases, especially for impactors
with small nose diameter colliding with thick shells, in which case the local indentation is

Table 1. Properties for a lamina layer of cylindrical shell*

Longitudinal Young’s modulus, £, (GPa) 14.506
Transverse Young’'s modulus, £, (GPs) 5.362
Shear modulus, G|, (GPa) 2.509
Poisson’s ratio, v;, 0.231
Mass density, p (kg m ) 1526
Cylinder internal diameter, a (mm) 216
Cylinder wall thickness, 4 (mm) 2.3
Total length, / (mm) 320

Winding angle relative to cylinder axis (outer layer to inner layer) [907°,90°,90%,90°,90°,90°,90°,90°]

* Taken from Gong (1995).
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Fig. 2. Impact force history for a hoop wound composite cylinder with thickness 2.3 mm, effective
length of 280 mm and diameter of 216 mm, due to impact by a 0.075 kg mass at a velocity of
(@ Ims !, (b)3ms~', and (c) Sms™".
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Fig. 3. Hoop strain histories (a), and axial strain histories (b), for a 2.3 mm thick hoop wound

composite cylinder with effective length of 280 mm and diameter of 216 mm, due to impact by a
0.075 kg mass at velocities of | ms™', 3ms™' and Sms™".

not negligible in comparison with the global deflection. In order to ascertain whether the
impact force actually varies linearly with the velocity of impact, the contact force history
was calculated for impacts on a long composite pipe at velocities up to 100 ms™".

Figure 6 shows the plot of peak contact force against the velocity of impact for
cylindrical shells with ratios of radius to thickness a/# of 50, 20 and 10. It can be observed
that for all three plots there is a slight nonlinearity in the variation between contact force
and velocity of impact. This is a consequence of the nonlinear Hertzian contact deformation
term appearing in eqn (26). The importance of the contact force term cannot be over-
emphasised considering the fact that in carbon fibre composite materials subjected to
impact, large local stresses due to contact deformation have been known to cause both
fibre damage and matrix cracking near the periphery of the contact region (Matemilola
and Stronge, 1995).

The effect of the trapezoidal term z/a, which appear in the expressions for stress
resultant and stress couple eqn (2), on the elastic solution can be studied by considering a
cylinder with winding angle of {90°,0°,90°,0°,90°,0°] (outer to inner layer). This term
affects the stress resultants and stress couples only if the layup is non-symmetric with respect
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Fig. 4. The effect of ratio of orthotropy E,/E, on the contact force (a), the hoop strain response (b),

and the axial strain response (¢) at the back surface of impact point, for a hoop wound composite

cylinder due to impact by a 0.075 kg mass colliding at 1 ms™'. Axial Young's modulus was kept
constant at 5.362 GPa. (Continued overleaf.)

to the middle surface. The thick walled cylinder has a wall thickness of 5 mm, internal
diameter of 50 mm and an effective length of 150 mm, and was struck by a 0.075 kg steel
mass colliding at 1 ms™"'. The elastic properties (but not the layup) are given in Table 1.
For this example problem, because the winding angle is non-symmetric with respect to the
middle surface of the cylinder wall, the elastic stiffness coefficients B, # 0 and E;, # 0. As
such, the terms B,/a are no longer negligible in comparison with 4,; (i,j = 1,2). Thus, the
trapezoidal terms contribute to the resultant axial stress, as can be observed from the plots
of the axial stress resultant.

Figure 7(a) shows that there is a decrease of 13% in the peak value of axial stress
resultant in comparison with calculations which neglect the trapezoidal term. Figures 7(b)
and (c) show that neglecting the trapezoidal term resulted in about 4% reduction in the
peak axial strain, while the hoop strain response was practically unchanged. This is because
for a cylindrical shell, the sides of an element taken from an axial section form a rectangle.
Thus, the hoop stress resultant and the hoop stress couple are not affected by the trapezoidal
term z/a, as can be observed from eqn (2). In considering the structural integrity of the
cylinder for this example problem, the effect of the trapezoidal terms may be considered
negligible. However, their importance cannot be overlooked if the cylinder had axial end
loads, in which case the trapezoidal terms B,/a, D;/a and E,/a appearing in eqns (4) and
(5) are directly involved in the calculations of the strain components. In this case, omitting
these trapezoidal terms may lead to significant errors in the calculated strains and stresses.

6. CONCLUSIONS

An analytical procedure has been presented for calculating the impact response of
simply supported orthotropic circular cylinders. Numerical examples for both thick and
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Fig. 5. The decay rate of hoop strain (a) and axial strain (b), at various locations along a generator
of a 2.3 mm thick hoop wound composite cylinder with properties listed in Table 1.
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Fig. 6. Variation of the maximum contact force with the velocity of impact for impact on a hoop
wound composite cylinder with an internal diameter of 216 mm, due to impact by a 0.075 kg mass,
for ratio of cylinder diameter to wall thickness a/h = 50, ajh = 20, a/h = 10. The internal diameter
of the cylinder was kept constant at 216 mm, while the thickness was varied.
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section, (b) maximum axial strain and (c¢) maximum hoop strain response on the back surface at

impact point. The 150 mm long composite cylinder has a wall thickness of 5 mm, internal diameter
of 50 mm, and winding angle of [30°, 07,907, 07, 90°,0°] (outer layer to inner layer).
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thin cylinders show that local contact deformation is important for an accurate solution of
the impact response. By including the Hertzian contact deformation term in the analysis,
the relationship between the contact force amplitude and the velocity of impact becomes
nonlinear. Also, terms arising due to the trapezoidal shape of the cross-section of an element
taken from the cylinder are important for accurate formulation of the elasticity problem.
These terms significantly contribute to the accuracy of the calculated structural response
of curved shells, especially for those with end loads. Numerical results show that the strain
decreases slowly in the directions which have a relatively large modulus. This has important
implications in the use of strain gauges in the experimental measurements of strain response
of thin walled cylindrical shells.
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